1. Dashboard
  2. Artikel
  3. Mitglieder
    1. Letzte Aktivitäten
    2. Benutzer online
    3. Team
    4. Mitgliedersuche
  4. Forum
    1. Unerledigte Themen
  • Anmelden
  • Registrieren
  • Suche
Dieses Thema
  1. Hausaufgaben-Forum
  2. Naturwissenschaftliche Fächer
  3. Mathematik Forum

M.S:

  • ms.srki
  • 6. Mai 2015 um 13:41
  • ms.srki
    Benutzer
    Beiträge
    36
    • 6. Mai 2015 um 13:41
    • #1

    I will present you a math composed of only two basis (natural and realistic basis)

    Current mathematics (CM.)

    Natural Base
    -natural straight line the main axiom, its beginning or end point and natural straight line a defined length and with two points
    NOTATION - natural straight line (lower case), points (capital letters or numbers (when specified point uploads metric (such as the number line)))

    -natural gaps negation natural straight line , natural emptiness and emptiness is defined with two points
    NOTATION - natural gaps (small underlined letter)

    -basic rule merger - natural straight line and natural gaps are connected only points
    -basic set - all possibilities defined theorem
    (CM.)does not know the natural straight line , point is not defined, knows no natural gap, is not defined by basic set

  • ms.srki
    Benutzer
    Beiträge
    36
    • 7. Mai 2015 um 09:14
    • #2

    Theorem - Natural straight line (natural gap) are connected in the direction of the points AB (0.1)
    PROOF - straight line (gaps) b ([tex]\underline{b}[/tex]) -defined AC (0,2)

    - straight line (gaps) c ([tex]\underline{c}[/tex]) -defined AD (0,3)

    ...
    infinite one way straight line (oneway infinite gaps) ∞ ([tex]\underline{\infty}[/tex]) defined A∞ (0, ∞)

    (CM.) - straight line (not from the natural basis), there is gaps, a one-way infinite straight line the (semi-line (not from natural base)), one-way infinite gaps does not exist

  • ms.srki
    Benutzer
    Beiträge
    36
    • 7. Mai 2015 um 18:35
    • #3

    Theorem - there is a relationship between the points 0 and all points one-way infinite straight line(one-way infinite gaps) including points 0

    PROOF - relationship points 0 points 0 and the number 0

    -relationship points 0 points 1 and the number 1( [tex]\underline{1}[/tex])

    -relationship points 0 points 2 and the number 2 ([tex]\underline{2}[/tex])

    ...

    basic set of natural numbers [tex]N^o=\{0 , 1 , 2 ,3 ,4 ,5 ,...\}[/tex]
    basic set of natural numbers gaps [tex]N_p^o=\{0 , \underline{1} ,\underline{2} ,\underline{3} ,\underline{4} ,\underline{5} ,...\}[/tex]

    (CM.) - natural numbers are given as an axiom, there is no natural gaps numbers (there is this form, but do not call numbers [tex](\{0,0\}\cup\{a,a\} a\in N)[/tex]

  • ms.srki
    Benutzer
    Beiträge
    36
    • 8. Mai 2015 um 08:42
    • #4

    Theorem - natural numbers and natural numbers gaps can be connected in the direction AB (0.1)

    PROOF - Number 1 and number [tex]\underline {1} [/tex]receives the combined number of [tex]1\underline {1}[/tex] or dup (duž , praznina )

    -Number [tex]\underline {1}[/tex] and number 1 receives the combined number of [tex]\underline {1}1[/tex] or dup 

    -Number 1 and number [tex]\underline {2}[/tex] receives the combined number of [tex]1\underline {2}[/tex] or dup

    [size=24pt]...[/size]
    - A basic set of combined natural numbers [tex]K^o=(a_n,\underline{b}_n,a_n\in{N^o},\underline{b}_n\in{N_p^o},(a_n,\underline{b}_n)>0)[/tex]

    [tex]a_1\underline{b}_1[/tex]
    [tex]\underline{b}_1a_1[/tex]
    [tex]a_1\underline{b}_1a_2[/tex]
    [tex]\underline{b}_1a_1\underline{b}_2[/tex]
    ...

    (CM.) - Dup do not know, not know the combined numbers (there is this form, but not numbers [tex]\{0,a\}\cup\{c,c\},\{0,0\}\cup\{a,b\},\{0,b\}\cup\{c,d\},\{0,0\}\cup\{a,b\}\cup\{c,c\},...[/tex] )

  • ms.srki
    Benutzer
    Beiträge
    36
    • 9. Mai 2015 um 17:23
    • #5

    Theorem - Two numbers have contact, their condition is described counts of first number

    PROOF - number 3 and number 2 have a contact at point 0
    [tex]3^{\underline{0}} 2[/tex]

    - number 3 and number 2 have a contact at point 1
    [tex]3^{\underline{1}}2[/tex]

    - number 3 and number 2 have a contact at point 2
    [tex]3^{\underline{2}}2[/tex]

    - number 3 and number 2 have a contact at point 3
    [tex]3^{\underline{3}}2[/tex]

    (CM.) - Knows no contact numbers

  • ms.srki
    Benutzer
    Beiträge
    36
    • 10. Mai 2015 um 19:21
    • #6

    Theorem - The contact numbers is sorted horizontally to be the only one natural straight line that gives a natural straight line

    PROOF - [tex]1\rightarrow 1[/tex]

    4[tex]{+_1^{\underline0}[/tex]2=2

    4[tex]+_1^{\underline1}[/tex]2=(1,1)

    4[tex]{+_1^{\underline2}[/tex]2=2

    4[tex]{+_1^{\underline3}}[/tex]2=(3,1)

    4[tex]{+_1^{\underline4}}[/tex]2=6 or 4+2=6

    +1 - addition rule 1

    (CM.) - There are no "addition rule 1" only when the contact point number, the axiom

  • ms.srki
    Benutzer
    Beiträge
    36
    • 11. Mai 2015 um 16:50
    • #7

    Theorem - The contact numbers is sorted horizontally to be the only one natural straight line that gives a natural straight line , when there are two (more) results between them becomes a gap.

    PROOF -[tex]1\rightarrow1(\underline{1})[/tex]

    [tex]4{+_2^{\underline0}}2=2[/tex]
    [tex]4{+_2^{\underline1}}2=1\underline{2}1[/tex]
    [tex]4{+_2^{\underline2}}2=2[/tex]
    [tex]4{+_2^{\underline3}}2=3\underline{1}1[/tex]
    [tex]4{+_2^{\underline4}}2=6[/tex]

    +2 - addition rule 2

    (CM.) - No "addition rule 2"

  • ms.srki
    Benutzer
    Beiträge
    36
    • 13. Mai 2015 um 13:18
    • #8

    Theorem - The contact number is sorted horizontally only be a natural straight line that gives a natural straight line , when there are two (more) results merge

    Proof - [tex]1\rightarrow 1 (\underline{s})[/tex]

    [tex]4{+_3^{\underline0}}2=2[/tex]


    [tex]4{+_3^{\underline1}}2=2[/tex]


    [tex]4{+_3^{\underline2}}2=2[/tex]


    [tex]4{+_3^{\underline3}}2=4[/tex]


    [tex]4{+_3^{\underline4}}2=6[/tex]


    [tex]+_3 [/tex]- addition rule 3


    (SM.) - no "addition rule 3 "

  • ms.srki
    Benutzer
    Beiträge
    36
    • 14. Mai 2015 um 09:21
    • #9

    Theorem - contact number is sorted horizontally, two natural straight line provide a natural straight line

    Proof - [tex]11\rightarrow1[/tex]
    [attachment=19640]

    [tex]2\underline{2 }2+_4^{\underline0}2\underline{2 }2=(2,2)[/tex]

    [tex]2\underline{2 }2+_4^{\underline1}2\underline{2 }2=(1,1)[/tex]

    [tex]2\underline{2 }2+_4^{\underline2}2\underline{2 }2=0[/tex]

    [tex]2\underline{2 }2+_4^{\underline3}2\underline{2 }2=1[/tex]

    [tex]2\underline{2 }2+_4^{\underline4}2\underline{2 }2=2[/tex]

    [tex]2\underline{2 }2+_4^{\underline5}2\underline{2 }2=1[/tex]

    [tex]2\underline{2 }2+_4^{\underline6}2\underline{2 }2=0[/tex]

    [tex]+_4[/tex] - addition rule 4


    (CM.) - No "addition rule 4"

  • ms.srki
    Benutzer
    Beiträge
    36
    • 18. Mai 2015 um 08:49
    • #10

    error corrected in PDF, in Serbian language, soon will be in English

    https://onedrive.live.com/redir?resid=70…hint=file%2cpdf

  • ms.srki
    Benutzer
    Beiträge
    36
    • 23. Mai 2015 um 14:14
    • #11

    [tex]+_8[/tex]
    Theorem - The contact number is sorted vertically:
    - Only one natural straight line gives a natural straight line
    - Two natural straight line that gives a natural straight line
    - When there are two (more) solution between them becomes gaps
    PROOF - [tex](1,11)\rightarrow1(\underline1)[/tex]

    [tex]2\underline{2 }2+_8^02\underline{2 }2=2\underline22 [/tex] or [tex]2\underline{2 }2+_8^{\underline6}2\underline{2 }2=2\underline22[/tex]

    [tex]2\underline{2 }2+_8^12\underline{2 }2=3\underline13[/tex] or [tex]2\underline{2 }2+_8^{\underline5}2\underline{2 }2=3\underline13[/tex]

    [tex]2\underline{2 }2+_8^22\underline{2 }2=8[/tex] or [tex]2\underline{2 }2+_8^{\underline4}2\underline{2 }2=8[/tex]

    [tex]2\underline{2 }2+_8^32\underline{2 }2=2\underline13\underline12[/tex] or [tex]2\underline{2 }2+_8^{\underline3}2\underline{2 }2=2\underline13\underline12[/tex]

    [tex]2\underline{2 }2+_8^42\underline{2 }2=2\underline22\underline22[/tex] or [tex]2\underline{2 }2+_8^{\underline2}2\underline{2 }2=2\underline22\underline22[/tex]

    [tex]2\underline{2 }2+_8^52\underline{2 }2=2\underline23\underline22[/tex] or [tex]2\underline{2 }2+_8^{\underline1}2\underline{2 }2=2\underline23\underline22[/tex]

    [tex]2\underline{2 }2+_8^62\underline{2 }2=2\underline24\underline22[/tex] or [tex]2\underline{2 }2+_8^{\underline0}2\underline{2 }2=2\underline24\underline22[/tex]

    [tex]+_8 [/tex]- addition rule 8


    (CM.) - no addition rule 8

  • ms.srki
    Benutzer
    Beiträge
    36
    • 25. Mai 2015 um 11:24
    • #12

    [tex]+_9[/tex]
    Theorem - The contact number is sorted vertically:
    - Only one natural straight line gives a natural straight line
    - Two natural straight line that gives a natural straight line
    - when there are two (more) solutions between them, are connected
    PROOF - [tex](1,11)\rightarrow1(\underline{s})[/tex]
    [Blockierte Grafik: http://217.26.67.168/uploads/3/5/3576551/y4.png]
    [tex]2\underline{2 }2+_9^02\underline{2 }2=4[/tex] or [tex]2\underline{2 }2+_9^{\underline6}2\underline{2 }2=4[/tex]

    [tex]2\underline{2 }2+_9^12\underline{2 }2=6[/tex] or [tex]2\underline{2 }2+_9^{\underline5}2\underline{2 }2=6[/tex]

    [tex]2\underline{2 }2+_9^22\underline{2 }2=8[/tex] or [tex]2\underline{2 }2+_9^{\underline4}2\underline{2 }2=8[/tex]

    [tex]2\underline{2 }2+_9^32\underline{2 }2=7[/tex] or [tex]2\underline{2 }2+_9^{\underline3}2\underline{2 }2=7[/tex]

    [tex]2\underline{2 }2+_9^42\underline{2 }2=6[/tex] or [tex]2\underline{2 }2+_9^{\underline2}2\underline{2 }2=6[/tex]

    [tex]2\underline{2 }2+_9^52\underline{2 }2=7 [/tex] or[tex]2\underline{2 }2+_9^{\underline1}2\underline{2 }2=7[/tex]

    [tex]2\underline{2 }2+_9^62\underline{2 }2=8[/tex] or [tex]2\underline{2 }2+_9^{\underline0}2\underline{2 }2=8[/tex]

    [tex]+_9[/tex] - addition rule 9


    (CM.) - no addition rule 9

    https://onedrive.live.com/redir?resid=70…hint=file%2cpdf

    Einmal editiert, zuletzt von ms.srki (25. Mai 2015 um 11:28)

  • ms.srki
    Benutzer
    Beiträge
    36
    • 26. Mai 2015 um 18:18
    • #13

    Theorem - The contact number is sorted vertically only one natural straight line gives a natural gaps

    PROOF [tex] 1\rightarrow \underline1[/tex]

    [tex]4{+_1^{0}}2=\underline2[/tex] or [tex] 4{+_1^{\underline4}}2=\underline2[/tex]

    [tex]4{+_1^{1}}2=('\underline1,\underline1)[/tex] or [tex]4{+_1^{\underline3}}2=('\underline1,\underline1)[/tex]

    [tex]4{+_1^{2}}2=\underline2[/tex] or [tex]4{+_1^{\underline2}}2=\underline2[/tex]

    [tex]4{+_1^{3}}2=('\underline3,\underline1)[/tex] ior [tex]4{+_1^{\underline1}}2=('\underline3,\underline1)[/tex]

    [tex]4{+_1^{4}}2=\underline6[/tex] or [tex]4{+_1^{\underline0}}2=\underline6[/tex]

    [tex]+_{10} [/tex]- addition rule10

    (CM.) - no addition rule 10

  • ms.srki
    Benutzer
    Beiträge
    36
    • 30. Mai 2015 um 15:05
    • #14

    ERROR - in the above posts should be like this
    [tex]4{+_{10}^{0}}2=\underline2[/tex] or [tex]4{+_{10}^{\underline4}}2=\underline2[/tex]

    [tex]4{+_{10}^{1}}2=('\underline1,\underline1)[/tex] or [tex]4{+_{10}^{\underline3}}2=('\underline1,\underline1)[/tex]

    [tex]4{+_{10}^{2}}2=\underline2[/tex] or [tex]4{+_{10}^{\underline2}}2=\underline2[/tex]

    [tex]4{+_{10}^{3}}2=('\underline3,\underline1)[/tex] or [tex][4{+_{10}^{\underline1}}2=('\underline3,\underline1)[/tex]

    [tex]4{+_{10}^{4}}2=\underline6[/tex] or [tex]4{+_{10}^{\underline0}}2=\underline6[/tex]

    Theorem - The contact number is sorted vertically only be a natural straight line that gives a natural gap
    -When has two (more) solution between them becomes straights lines

    PROOF - [tex]1\rightarrow \underline1(1)[/tex]

    [tex]4{+_{11}^{0}}2=\underline2[/tex] or [tex]4{+_{11}^{\underline4}}2=\underline2[/tex]

    [tex]4{+_{11}^{1}}2=('\underline12\underline1)[/tex] or [tex]4{+_{11}^{\underline3}}2=('\underline12\underline1)[/tex]

    [tex]4{+_{11}^{2}}2=\underline2[/tex] or [tex]4{+_{11}^{\underline2}}2=\underline2[/tex]

    [tex]4{+_{11}^{3}}2=('\underline31\underline1)[/tex] or [tex]4{+_{11}^{\underline1}}2=('\underline31\underline1)[/tex]

    [tex]4{+_{11}^{4}}2=\underline6[/tex] or [tex]4{+_{11}^{\underline0}}2=\underline6[/tex]

    [tex]+_{11} [/tex]- addition rule 11

    (CM.) - no addition rule 11

  • ms.srki
    Benutzer
    Beiträge
    36
    • 3. Juni 2015 um 11:54
    • #15

    Theorem - The contact number is sorted vertically only be a natural straight line that gives a natural gap
    -When has two (more) solutions they are connected
    Proof -[tex]1\rightarrow \underline1(\underline{s})[/tex]

    [tex]4{+_{12}^{0}}2=\underline2[/tex] or [tex]4{+_{12}^{\underline4}}2= \underline2[/tex]

    [tex]4{+_{12}^{1}}2=\underline2[/tex] or [tex]4{+_{12}^{\underline3}}2= \underline2[/tex]

    [tex]4{+_{12}^{2}}2=\underline2[/tex] or [tex]4{+_{12}^{\underline2}}2= \underline2[/tex]

    [tex]4{+_{12}^{3}}2=\underline4[/tex] or [tex]4{+_{12}^{\underline1}}2= \underline4[/tex]

    [tex]4{+_{12}^{4}}2=\underline6[/tex] or [tex]4{+_{12}^{\underline0}}2= \underline6[/tex]

    [tex]+_{12}[/tex]- addition rule 12
    (CM.) - no addition rule 12

  • Fluffy
    Profi
    Beiträge
    1.110
    • 3. Juni 2015 um 18:48
    • #16

    Gibt es in diesem Forum irgend jemanden, der von diesem Beitrag profitiert? Was soll der Sinn dessen sein? Kann mich da mal bitte jemand aufklären?

  • ms.srki
    Benutzer
    Beiträge
    36
    • 4. Juni 2015 um 18:11
    • #17
    Zitat von Fluffy

    Gibt es in diesem Forum irgend jemanden, der von diesem Beitrag profitiert? Was soll der Sinn dessen sein? Kann mich da mal bitte jemand aufklären?


    if there is a mathematical procedure to solve the numbers (4, 2) and the interval [TEX]\{0,2\}\cup\{4,6\}[/TEX] for a solution which I PASSED (all 12 forms of addition) then show and prove that what I have he presented is not new in mathematics

Tags

  • forum
  • line
  • sin
  • attachment
  • ion
  • http
  • you
  • have
  • know
  • like
  • beitrag
  • two
  • there
  • addition
  • present
  • small
  • basis
  • more
  • form
  • base
  • their
  • mai
  • point
  • realistic
  • gap
  1. Datenschutzerklärung
  2. Impressum
Community-Software: WoltLab Suite™
  • Alles
  • Dieses Thema
  • Dieses Forum
  • Artikel
  • Seiten
  • Forum
  • Erweiterte Suche
Zitat speichern